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Abstract. For the two-dimensional kinetic Ising model at finite temperature, the local mean
magnetizationMt = t−1

∫ t
0 σ(t

′) dt ′, simply related to the fraction of time spent by a given
spin in the positive direction, has a limiting distribution, singular at±m0(T ), the Onsager
spontaneous magnetization. The exponent of this singularity defines the persistence exponentθ .
We also study first passage exponents associated to persistent large deviations ofMt , and their
temperature dependence.

In this paper we present a new approach to the study of persistence for systems undergoing
phase ordering [1, 2] at finite temperature, which we shall illustrate in the case of the two-
dimensional Ising model. In this approach persistence appears as a stationary property of the
coarsening system, and the role of the Onsager spontaneous magnetization at equilibrium
m0(T ) is made apparent, thus revealing new fundamental features of phase ordering.
It departs from previous approaches to finite-temperature persistence [3–6], where these
features did not appear.

Consider a system of Ising spinsσi(t) = ±1 located at sitesi = 1, . . . , N , starting from
a random initial condition, and evolving under the heat bath dynamics at fixed temperature
below the critical temperature. At each time-step a spin is picked at random, and updated
with the probability

P(σi(t + dt) = +1) = 1

2

(
1+ tanh

1

T

∑
j

σj (t)

)
(1)

where the sum runs over the neighbours of sitei. Under this dynamics spins thermalize
in their local environment. Therefore the system coarsens, i.e. domains of opposite signs
grow and, in the scaling regime, the system is statistically self-similar, with only one single
characteristic length scale, which is the size of a typical domain [1, 2].

The question of persistence is to determine the fraction of spaceR(t) which remains in
the same phase up to timet [7, 8] (or from timet1 to time t2). For the two-dimensional Ising
model at zero temperature, two phases coexist, corresponding to all spins equal to+1 or all
spins equal to−1. HenceR(t) is equivalently defined as the fraction of spins which do not
flip up to timet [9], i.e. which were not swept by an interface between domains of all spins
+1 or all spins−1. Numerical measurements indicate an algebraic decayR(t) ∼ t−θ , with
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θ ≈ 0.22 [9–11]. The same behaviour was observed in an experiment on a liquid crystal
system with effective zero temperature two-dimensional Glauber dynamics [12], while a
variational estimate ofθ at zero temperature leads to a value close to 0.2 [13].

The definition of persistence at finite temperature belowTc is more subtle to implement
because one has to make clear what is meant by ‘phase’. In essence, in the coarsening
process there is phase separation, each phase wanting to develop at the expense of the
other. It is therefore intuitive that the system, though perpetually out of equilibrium, tries
to reach locally one of the two equilibrium phases, corresponding to±m0(T ), where

m0(T ) =
(

1−
(

sinh
2

T

)−4
)1/8

(2)

is the Onsager spontaneous magnetization at equilibrium [14]. Hence in the scaling regime
the average magnetization inside a domain measured on a scale of time small compared with
the flipping time of the domain, should be close to the equilibrium magnetization at this
temperature. Coming back to persistence, the definition ofR(t) should reflect, in one way
or another, the fact that a given point in space remains in a phase of average magnetization
equal to±m0(T ) up to timet . This intuitive analysis is confirmed by what follows.

The central point of our approach is to consider the statistics of the local mean
magnetization—simply related to the fraction of time spent by a spin in the positive
direction—in the limit of large times. This line of thought is used in [15] in the study
of domain coarsening for the one-dimensional Ising model at zero temperature, and for the
simple diffusion equation evolved from a random initial condition (see also [16]). The idea
is that since persistence probes the past history of the system, a natural quantity to consider
is
∫ t

0 σ(t
′) dt ′ = T +t − T −t , whereσ(t) is the spin at sitei andT +t (T −t ) is the length of

time spent by the spin pointing upward (downward), witht = T +t + T −t . The local mean
magnetization is defined as

Mt = 1

t

∫ t

0
σ(t ′) dt ′ = 2

T +t
t
− 1. (3)

For instance, at zero temperature, the persistence probabilityR(t) is equal toP(Mt = 1)
since the event{σ(t ′) = 1, ∀t ′ 6 t} is identical to the event{Mt = 1}. SinceMt is a local
quantity varying from site to site, one is naturally led to investigate the distribution ofMt ,

P(t, x) = P(Mt > x) (−16 x 6 1). (4)

For the one-dimensional Ising model atT = 0 it is shown in [15] by analytical arguments
and numerical measurements that, whent → ∞, P(t, x) converges to a limit distribution
P∞(x) with density

fM(x) = − d

dx
P∞(x) (5)

singular atx = ±1, with singularity exponent equal toθ−1. It is, for example easy to show
that, whent → ∞, the limit of 〈M2

t 〉 is a constant equal tôA(1), the Laplace transform
of the two-time correlation with respect to the variable lnt , at argument equal to 1 [15].
This result therefore provides astationarydefinition of persistence at zero temperature. The
same holds for the diffusion equation [15, 16].

We now address the same questions at finite temperature.We first report on numerical
results. Figure 1 depicts the histogram of the density ofMt at time t = 1000 for values
of T ranging from 0 to 1.1Tc. Already for such a short time, and for every temperature
T < Tc, the density is maximum around±m0(T ), the equilibrium magnetization (2). At
larger times and forT > Tc, the density ofMt becomes peaked around zero, i.e. the mean
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Figure 1. Histogram of the density ofMt at time t = 1000, forT = 0, 0.8Tc, 0.9Tc, 0.95Tc,
Tc, 1.1Tc, from bottom to top (at the central pointx = 0). (The system size is 30722.)

magnetization converges toward the average magnetization per spin〈σ 〉 = 0, reflecting the
fact that the system reaches equilibrium. AtTc the peaking of the density ofMt is observed
to be very slow. Finally atT < Tc, P(t, x) converges, whent →∞, to a limit distribution
P∞(x) with densityfM(x) given as in (5).

The existence of a limit law at finite temperatureT < TC relies on the same arguments
as for the zero-temperature case. For instance, the convergence of〈M2

t 〉 to a constant equal
to Â(1) still holds since it only relies on the existence of a scaling regime [15]. The striking
fact is that now the density concentrates on [−m0(T ),m0(T )] with an exponential decay
with time ofP(Mt > m0(T )) to 0. Moreover, the limit density is singular at±m0(T ), with
a singularity exponentθ − 1 which defines the persistence exponent at temperatureT .

This leads to the question of the temperature dependence of persistence forT < Tc.
The simplest assumption is that, during the coarsening process, the timescales between a
short-time regime and the scaling regime decouple, yielding the following relation between
the moments of the limit distributions atT and at zero temperature,

〈M2k〉T = (m0(T ))
2k〈M2k〉0 (6)

implying the identity of the limit distributions, ifMt is rescaled bym0(T ), and as a
consequence, the temperature independence ofθ . This would be in agreement with the
usual view that zero temperature is an attracting fixed point for the dynamics of phase
ordering [2, 4]. Equation (6) is hard to check by numerical measurements because the
convergence of the data is observed to be slow. The difficulty is illustrated by figure 2
which depicts a plot of 1− P(t, x) against the rescaled variablex/m0(T ), at T = 0 and
0.8Tc, for t = 20 000, and atT = 0.98Tc, for t = 1000, 5000 and 30 000. Though one
cannot be conclusive on the sole basis of numerical measurements, data collapse nevertheless
seems plausible. Note that the limit distribution 1− P∞(x) at T = 0 is well approximated
by a beta distribution, as was observed for the one-dimensional Ising model [15], or for the
diffusion equation [15, 16]. The singularity exponent of the beta distribution is found to
be around 0.22. A more precise numerical determination of the exponentθ from the limit
distribution ofMt needs further work and will be presented elsewhere.



9804 J-M Drouffe and C Godr`eche

Figure 2. Plot of 1−P(t, x) against the rescaled variablex/m0(T ), atT = 0 (full), T = 0.8Tc
(dots), for t = 20 000, and atT = 0.98Tc, for t = 1000, 5000 and 30 000. (The system size is
30722.)

Let us summarize at this point. ForT < Tc, the local mean magnetizationMt has a limit
probability density whent →∞, defined on the interval [−m0(T ),m0(T )], wherem0(T )

is the equilibrium magnetization, and singular at both ends. This provides astationary
definition of persistence, which is a natural extension of the zero-temperature case, where
the singularity exponent defines the persistence exponent. These are the central results of
this work.

Another new aspect of persistence introduced in [15] is concerned withpersistent large
deviations. The probability of persistent large deviations above the levelx (−1 6 x 6 1),
denoted byR(t, x), is defined as the probability that the mean magnetization was, for all
previous times, greater thanx [15],

R(t, x) = P(Mt ′ > x, ∀t ′ 6 t). (7)

In other words one is interested in the persistence probability of the stochastic process
σ(t, x) = sign(Mt − x) [15]. If one views the stochastic processσ(t) as the successive
steps of a fictitious random walker, thenMt is the mean speed of the walker between 0 and
t , andR(t, x) is the probability that this mean speed remains larger thanx between 0 and
t . This probability is a natural generalization of the persistence probabilityR(t) ≡ R(t, 1),
which corresponds to the walker always stepping to the right.

For the one-dimensional Ising model at zero temperature,R(t, x) was observed to decay
algebraically at large times with an exponentθ(x) continuously varying withx [15]. For
x = 1, θ(1) = θ , the usual persistence exponent. Figure 3 depicts a log–log plot ofR(t, x)

for the two-dimensional Ising model at zero temperature,x varying from−1 to 1, while
figure 4 depicts the corresponding exponentsθ(x), extracted from figure 3. Let us mention
that algebraic decay ofR(t, x) was also observed for the diffusion equation [15], and that
this quantity and the corresponding exponentsθ(x) can be exactly computed for the simple
model considered in [17].

We now address the role of temperature for persistent large deviations. As is obvious
from the first part of this work, ifx > m0(T ), thenR(t, x) decays to zero exponentially.
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Figure 3. Log–log plot ofR(t, x) for the two-dimensional Ising model at zero temperature,x

varying from−1 to 1, by steps of 0.1, from top to bottom. (The system size is 15362.)

Figure 4. Exponentsθ(x) extracted from figure 3.

On the other hand, forx < m0(T ) one observes algebraic decay ofR(t, x), as at zero
temperature. Otherwise stated,x = m0(T ) separates two regimes of persistent large
deviations, between exponential and algebraic. As a consequence, and by analogy with
the zero-temperature case, one could think of extracting the persistence exponent at finite
temperature from the decay at large times ofR(t, x) when x → m0(T )

−, which leads to
the formal definition

R(t) = lim
x→m0(T )−

R(t, x) i.e. θ = lim
x→m0(T )−

θ(x). (8)

However, this definition is not easy to implement in practice.
We did not investigate the temperature dependence ofθ(x) in all generality. We
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Figure 5. Log–log plot of R(t, 0) for temperatures T = 0, 0.8Tc, 0.9Tc,
0.95Tc, 0.98Tc, Tc, 1.1Tc, 1.5Tc, from top to bottom. (The system size is 15362.)

restricted our study to the casex = 0 which corresponds to

R(t, 0) = P
(∫ t

0
σ(t ′) dt ′ > 0, ∀t ′ 6 t

)
= P(T +t ′ > T −t ′ , ∀t ′ 6 t). (9)

We find thatR(t, 0) ∼ t−θ(0) with

θ(0) = 0.5 T = ∞
θ(0) ≈ 0.27 T = Tc
θ(0) ≈ 0.20 T = 0.

(10)

For Tc < T , after a crossover,θ(0) takes the high-temperature value, 0.5, while forT < Tc
it takes the low-temperature value,≈ 0.20. (See figure 5.) The explanation of the value
of θ(0) for T = ∞ is simple. Since spins are independent, identifying as aboveσ(t), the
spin at sitei, to the steps of a fictitious one-dimensional symmetric random walker,R(t, 0)
represents the probability that the walker did not cross the origin up to timet , which is,
as is well known, decaying ast−1/2 [18]. For decreasing temperatures, spins become more
correlated, hence the exponentθ(0) decreases. Note that the first passage exponentθ(0) is
defined forT > Tc, i.e. even in the absence of coarsening.

This work raises a number of questions. For instance, what is the temperature
dependence of the two-time correlation in the scaling regime, forT < Tc? Is hypothesis (6)
valid? What is the behaviour of the distribution ofMt at Tc when t →∞? At Tc, is θ(0)
a new independent critical exponent, or is it related (equal?) to the persistence exponent
θc for the global magnetization [19, 4]? Let us mention that, for the three-dimensional
Ising model, the quantities studied here have similar behaviour. Finally, in our view, an
important point of the analysis presented here is that it may be applied to any coarsening
system, since it relies mainly on scaling.
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